
    UgEA                        d Z ddlZddlZddlmZ ddlZddlmZ ddl	m
Z
 ddlmZmZ ddlmZmZmZmZ dd	lmZmZ dd
lmZmZmZ ddlmZmZ g dZ edgdgdd          d             Z edgddg eeddd          dg eeddd          dgdgdd          dddddd            Z G d deee          Z dS )z8Isotonic regression for obtaining monotonic fit to data.    N)Real)interpolate)	spearmanr   )'_inplace_contiguous_isotonic_regression_make_unique)BaseEstimatorRegressorMixinTransformerMixin_fit_context)check_arraycheck_consistent_length)Interval
StrOptionsvalidate_params)_check_sample_weightcheck_is_fitted)check_increasingisotonic_regressionIsotonicRegressionz
array-likexyTprefer_skip_nested_validationc                    t          | |          \  }}|dk    }|dvrt          |           dk    rdt          j        d|z   d|z
  z            z  }dt          j        t          |           dz
            z  }t          j        |d|z  z
            }t          j        |d|z  z             }t          j        |          t          j        |          k    rt          j	        d           |S )	a?  Determine whether y is monotonically correlated with x.

    y is found increasing or decreasing with respect to x based on a Spearman
    correlation test.

    Parameters
    ----------
    x : array-like of shape (n_samples,)
            Training data.

    y : array-like of shape (n_samples,)
        Training target.

    Returns
    -------
    increasing_bool : boolean
        Whether the relationship is increasing or decreasing.

    Notes
    -----
    The Spearman correlation coefficient is estimated from the data, and the
    sign of the resulting estimate is used as the result.

    In the event that the 95% confidence interval based on Fisher transform
    spans zero, a warning is raised.

    References
    ----------
    Fisher transformation. Wikipedia.
    https://en.wikipedia.org/wiki/Fisher_transformation

    Examples
    --------
    >>> from sklearn.isotonic import check_increasing
    >>> x, y = [1, 2, 3, 4, 5], [2, 4, 6, 8, 10]
    >>> check_increasing(x, y)
    np.True_
    >>> y = [10, 8, 6, 4, 2]
    >>> check_increasing(x, y)
    np.False_
    r   )g            ?   g      ?r   r   g\(\?zwConfidence interval of the Spearman correlation coefficient spans zero. Determination of ``increasing`` may be suspect.)
r   lenmathlogsqrttanhnpsignwarningswarn)	r   r   rho_increasing_boolFF_serho_0rho_1s	            O/var/www/surfInsights/venv3-11/lib/python3.11/site-packages/sklearn/isotonic.pyr   r      s    f q!__FCQhO +#a&&1**$(C#I#)455549SVVaZ((( 	!dTk/**	!dTk/** 75>>RWU^^++M       bothclosedboolean)r   sample_weighty_miny_max
increasingr5   r6   r7   r8   c                   |rt           j        dd         nt           j        ddd         }t          | ddt           j        t           j        g          } t          j        | |         | j                  } t          || | j        d          }t          j        ||                   }t          | |           ||4|t           j
         }|t           j
        }t          j        | |||            | |         S )	a0  Solve the isotonic regression model.

    Read more in the :ref:`User Guide <isotonic>`.

    Parameters
    ----------
    y : array-like of shape (n_samples,)
        The data.

    sample_weight : array-like of shape (n_samples,), default=None
        Weights on each point of the regression.
        If None, weight is set to 1 (equal weights).

    y_min : float, default=None
        Lower bound on the lowest predicted value (the minimum value may
        still be higher). If not set, defaults to -inf.

    y_max : float, default=None
        Upper bound on the highest predicted value (the maximum may still be
        lower). If not set, defaults to +inf.

    increasing : bool, default=True
        Whether to compute ``y_`` is increasing (if set to True) or decreasing
        (if set to False).

    Returns
    -------
    y_ : ndarray of shape (n_samples,)
        Isotonic fit of y.

    References
    ----------
    "Active set algorithms for isotonic regression; A unifying framework"
    by Michael J. Best and Nilotpal Chakravarti, section 3.

    Examples
    --------
    >>> from sklearn.isotonic import isotonic_regression
    >>> isotonic_regression([5, 3, 1, 2, 8, 10, 7, 9, 6, 4])
    array([2.75   , 2.75   , 2.75   , 2.75   , 7.33...,
           7.33..., 7.33..., 7.33..., 7.33..., 7.33...])
    NFr   )	ensure_2d
input_namedtyper>   T)r>   copy)r$   s_r   float64float32arrayr>   r   ascontiguousarrayr   infclip)r   r5   r6   r7   r8   orders         r/   r   r   e   s    n #3BE!!!HHdddEA3rz2:>VWWWA
5)))A(tTTTM(u)=>>M+A}===E-=VGE=FE
5%###U8Or0   c                   $    e Zd ZU dZ eeddd          dg eeddd          dgd edh          g eh d          gdZee	d	<   ddd
dddZ
d Zd ZddZ ed
          dd            Zd Zd Zd ZddZ fdZ fdZd Z xZS )r   a  Isotonic regression model.

    Read more in the :ref:`User Guide <isotonic>`.

    .. versionadded:: 0.13

    Parameters
    ----------
    y_min : float, default=None
        Lower bound on the lowest predicted value (the minimum value may
        still be higher). If not set, defaults to -inf.

    y_max : float, default=None
        Upper bound on the highest predicted value (the maximum may still be
        lower). If not set, defaults to +inf.

    increasing : bool or 'auto', default=True
        Determines whether the predictions should be constrained to increase
        or decrease with `X`. 'auto' will decide based on the Spearman
        correlation estimate's sign.

    out_of_bounds : {'nan', 'clip', 'raise'}, default='nan'
        Handles how `X` values outside of the training domain are handled
        during prediction.

        - 'nan', predictions will be NaN.
        - 'clip', predictions will be set to the value corresponding to
          the nearest train interval endpoint.
        - 'raise', a `ValueError` is raised.

    Attributes
    ----------
    X_min_ : float
        Minimum value of input array `X_` for left bound.

    X_max_ : float
        Maximum value of input array `X_` for right bound.

    X_thresholds_ : ndarray of shape (n_thresholds,)
        Unique ascending `X` values used to interpolate
        the y = f(X) monotonic function.

        .. versionadded:: 0.24

    y_thresholds_ : ndarray of shape (n_thresholds,)
        De-duplicated `y` values suitable to interpolate the y = f(X)
        monotonic function.

        .. versionadded:: 0.24

    f_ : function
        The stepwise interpolating function that covers the input domain ``X``.

    increasing_ : bool
        Inferred value for ``increasing``.

    See Also
    --------
    sklearn.linear_model.LinearRegression : Ordinary least squares Linear
        Regression.
    sklearn.ensemble.HistGradientBoostingRegressor : Gradient boosting that
        is a non-parametric model accepting monotonicity constraints.
    isotonic_regression : Function to solve the isotonic regression model.

    Notes
    -----
    Ties are broken using the secondary method from de Leeuw, 1977.

    References
    ----------
    Isotonic Median Regression: A Linear Programming Approach
    Nilotpal Chakravarti
    Mathematics of Operations Research
    Vol. 14, No. 2 (May, 1989), pp. 303-308

    Isotone Optimization in R : Pool-Adjacent-Violators
    Algorithm (PAVA) and Active Set Methods
    de Leeuw, Hornik, Mair
    Journal of Statistical Software 2009

    Correctness of Kruskal's algorithms for monotone regression with ties
    de Leeuw, Psychometrica, 1977

    Examples
    --------
    >>> from sklearn.datasets import make_regression
    >>> from sklearn.isotonic import IsotonicRegression
    >>> X, y = make_regression(n_samples=10, n_features=1, random_state=41)
    >>> iso_reg = IsotonicRegression().fit(X, y)
    >>> iso_reg.predict([.1, .2])
    array([1.8628..., 3.7256...])
    Nr1   r2   r4   auto>   nanrG   raiser6   r7   r8   out_of_bounds_parameter_constraintsTrK   c                >    || _         || _        || _        || _        d S NrM   )selfr6   r7   r8   rN   s        r/   __init__zIsotonicRegression.__init__  s%    

$*r0   c                 z    |j         dk    s-|j         dk    r|j        d         dk    sd}t          |          d S d S )Nr      zKIsotonic regression input X should be a 1d array or 2d array with 1 feature)ndimshape
ValueError)rR   Xmsgs      r/   _check_input_data_shapez*IsotonicRegression._check_input_data_shape  sH    !!
a*  S//! r0   c                     | j         dk    }t                    dk    rfd| _        dS t          j        |d|          | _        dS )zBuild the f_ interp1d function.rL   r   c                 8                         | j                  S rQ   )repeatrW   r   s    r/   <lambda>z-IsotonicRegression._build_f.<locals>.<lambda>&  s     1 1 r0   linear)kindbounds_errorN)rN   r   f_r   interp1d)rR   rY   r   rb   s     ` r/   _build_fzIsotonicRegression._build_f   s[     )W4q66Q;;1111DGGG!*18,  DGGGr0   c           	        
 |                      |           |                    d          }| j        dk    rt          ||          | _        n| j        | _        t          |||j                  }|dk    }||         ||         ||         }}}t          j        ||f          

fd|||fD             \  }}}t          |||          \  }}}|}t          ||| j        | j        | j                  }t          j        |          t          j        |          c| _        | _        |rt          j        t%          |          ft&                    }	t          j        t          j        |dd         |dd	                   t          j        |dd         |d
d                             |	dd<   ||	         ||	         fS ||fS )z Build the y_ IsotonicRegression.r;   rJ   r?   r   c                      g | ]
}|         S  rh   ).0rD   rH   s     r/   
<listcomp>z/IsotonicRegression._build_y.<locals>.<listcomp>>  s    OOOuU|OOOr0   r9   r   NrU   )r[   reshaper8   r   increasing_r   r>   r$   lexsortr   r   r6   r7   minmaxX_min_X_max_onesr   bool
logical_or	not_equal)rR   rY   r   r5   trim_duplicatesmaskunique_Xunique_yunique_sample_weight	keep_datarH   s             @r/   _build_yzIsotonicRegression._build_y,  s   $$Q'''IIbMM ?f$$/155D#D -]AQWMMMq gqwd0Cm1
Aq6""OOOO!Q9NOOO1m3?1m3T3T0(0.**'
 
 
 $&6!99bfQii T[ 	Q	666I !mQqtWaf--r|AadGQqrrU/K/K IadO Y<9-- a4Kr0   r   c                 >   t          dd          }t          |fdt          j        t          j        gd|}t          |fd|j        d|}t          |||           |                     |||          \  }}||c| _        | _	        | 
                    ||           | S )a  Fit the model using X, y as training data.

        Parameters
        ----------
        X : array-like of shape (n_samples,) or (n_samples, 1)
            Training data.

            .. versionchanged:: 0.24
               Also accepts 2d array with 1 feature.

        y : array-like of shape (n_samples,)
            Training target.

        sample_weight : array-like of shape (n_samples,), default=None
            Weights. If set to None, all weights will be set to 1 (equal
            weights).

        Returns
        -------
        self : object
            Returns an instance of self.

        Notes
        -----
        X is stored for future use, as :meth:`transform` needs X to interpolate
        new input data.
        F)accept_sparser<   rY   )r=   r>   r   )dictr   r$   rB   rC   r>   r   r}   X_thresholds_y_thresholds_re   )rR   rY   r   r5   check_paramss        r/   fitzIsotonicRegression.fit]  s    : %5AAA
bj"*%=
 
AM
 
 IcIILII1m444 }}Q=111 23A.D. 	ar0   c                    t          | d          r| j        j        }nt          j        }t          ||d          }|                     |           |                    d          }| j        dk    r t          j	        || j
        | j                  }|                     |          }|                    |j                  }|S )a  `_transform` is called by both `transform` and `predict` methods.

        Since `transform` is wrapped to output arrays of specific types (e.g.
        NumPy arrays, pandas DataFrame), we cannot make `predict` call `transform`
        directly.

        The above behaviour could be changed in the future, if we decide to output
        other type of arrays when calling `predict`.
        r   F)r>   r<   r;   rG   )hasattrr   r>   r$   rB   r   r[   rl   rN   rG   rq   rr   rc   astype)rR   Tr>   ress       r/   
_transformzIsotonicRegression._transform  s     4)) 	&,EEJE%888$$Q'''IIbMM''4;44Aggajj jj!!
r0   c                 ,    |                      |          S )a  Transform new data by linear interpolation.

        Parameters
        ----------
        T : array-like of shape (n_samples,) or (n_samples, 1)
            Data to transform.

            .. versionchanged:: 0.24
               Also accepts 2d array with 1 feature.

        Returns
        -------
        y_pred : ndarray of shape (n_samples,)
            The transformed data.
        r   rR   r   s     r/   	transformzIsotonicRegression.transform  s      q!!!r0   c                 ,    |                      |          S )a%  Predict new data by linear interpolation.

        Parameters
        ----------
        T : array-like of shape (n_samples,) or (n_samples, 1)
            Data to transform.

        Returns
        -------
        y_pred : ndarray of shape (n_samples,)
            Transformed data.
        r   r   s     r/   predictzIsotonicRegression.predict  s     q!!!r0   c                     t          | d           | j        j                                        }t	          j        | dgt                    S )aK  Get output feature names for transformation.

        Parameters
        ----------
        input_features : array-like of str or None, default=None
            Ignored.

        Returns
        -------
        feature_names_out : ndarray of str objects
            An ndarray with one string i.e. ["isotonicregression0"].
        rc   0r?   )r   	__class____name__lowerr$   asarrayobject)rR   input_features
class_names      r/   get_feature_names_outz(IsotonicRegression.get_feature_names_out  sK     	d###^,2244
zj+++,F;;;;r0   c                 t    t                                                      }|                    dd           |S )z0Pickle-protocol - return state of the estimator.rc   N)super__getstate__poprR   stater   s     r/   r   zIsotonicRegression.__getstate__  s1    $$&&		$r0   c                     t                                          |           t          | d          r2t          | d          r$|                     | j        | j                   dS dS dS )znPickle-protocol - set state of the estimator.

        We need to rebuild the interpolation function.
        r   r   N)r   __setstate__r   re   r   r   r   s     r/   r   zIsotonicRegression.__setstate__  sz    
 	U###4)) 	BgdO.L.L 	BMM$,d.@AAAAA	B 	B 	B 	Br0   c                     ddgiS )NX_types1darrayrh   )rR   s    r/   
_more_tagszIsotonicRegression._more_tags  s    I;''r0   )TrQ   )r   
__module____qualname____doc__r   r   r   rO   r   __annotations__rS   r[   re   r}   r   r   r   r   r   r   r   r   r   __classcell__)r   s   @r/   r   r      s        [ [| (4tF;;;TB(4tF;;;TB **fX"6"67$*%=%=%=>>?	$ $D    !%DTQV + + + + +" " "
 
 
/ / / /b \555/ / / 65/b  <" " "$" " "&< < < <"    B B B B B( ( ( ( ( ( (r0   r   )!r   r    r&   numbersr   numpyr$   scipyr   scipy.statsr   	_isotonicr   r   baser	   r
   r   r   utilsr   r   utils._param_validationr   r   r   utils.validationr   r   __all__r   r   r   rh   r0   r/   <module>r      s!   > >                   ! ! ! ! ! ! L L L L L L L L O O O O O O O O O O O O 7 7 7 7 7 7 7 7 J J J J J J J J J J C C C C C C C C
K
K
K ^^  #'  B B BJ ^&-(4tF;;;TB(4tF;;;TB k  #'	 	 	 D; ; ; ;	 	;|G( G( G( G( G()9= G( G( G( G( G(r0   