
    Ugl                     B    d dl Zd dlmZmZ d dlZdgZddddZddZdS )	    N)solveLinAlgWarningnnls)atolc                   t          j        |           } t          j        |          }t          | j                  dk    rt	          dd| j         z             t          |j                  dk    rt	          dd|j         z             | j        \  }}||j        d         k    r$t	          dd	| d
|j        d         f z             t          | |||          \  }}}|dk    rt          d          ||fS )a  
    Solve ``argmin_x || Ax - b ||_2`` for ``x>=0``.

    This problem, often called as NonNegative Least Squares, is a convex
    optimization problem with convex constraints. It typically arises when
    the ``x`` models quantities for which only nonnegative values are
    attainable; weight of ingredients, component costs and so on.

    Parameters
    ----------
    A : (m, n) ndarray
        Coefficient array
    b : (m,) ndarray, float
        Right-hand side vector.
    maxiter: int, optional
        Maximum number of iterations, optional. Default value is ``3 * n``.
    atol: float
        Tolerance value used in the algorithm to assess closeness to zero in
        the projected residual ``(A.T @ (A x - b)`` entries. Increasing this
        value relaxes the solution constraints. A typical relaxation value can
        be selected as ``max(m, n) * np.linalg.norm(a, 1) * np.spacing(1.)``.
        This value is not set as default since the norm operation becomes
        expensive for large problems hence can be used only when necessary.

    Returns
    -------
    x : ndarray
        Solution vector.
    rnorm : float
        The 2-norm of the residual, ``|| Ax-b ||_2``.

    See Also
    --------
    lsq_linear : Linear least squares with bounds on the variables

    Notes
    -----
    The code is based on [2]_ which is an improved version of the classical
    algorithm of [1]_. It utilizes an active set method and solves the KKT
    (Karush-Kuhn-Tucker) conditions for the non-negative least squares problem.

    References
    ----------
    .. [1] : Lawson C., Hanson R.J., "Solving Least Squares Problems", SIAM,
       1995, :doi:`10.1137/1.9781611971217`
    .. [2] : Bro, Rasmus and de Jong, Sijmen, "A Fast Non-Negativity-
       Constrained Least Squares Algorithm", Journal Of Chemometrics, 1997,
       :doi:`10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L`

     Examples
    --------
    >>> import numpy as np
    >>> from scipy.optimize import nnls
    ...
    >>> A = np.array([[1, 0], [1, 0], [0, 1]])
    >>> b = np.array([2, 1, 1])
    >>> nnls(A, b)
    (array([1.5, 1. ]), 0.7071067811865475)

    >>> b = np.array([-1, -1, -1])
    >>> nnls(A, b)
    (array([0., 0.]), 1.7320508075688772)

       z)Expected a two-dimensional array (matrix)z, but the shape of A is    z)Expected a one-dimensional array (vector)z, but the shape of b is r   z0Incompatible dimensions. The first dimension of zA is z, while the shape of b is )tolz%Maximum number of iterations reached.)npasarray_chkfinitelenshape
ValueError_nnlsRuntimeError)	Abmaxiterr   mnxrnormmodes	            S/var/www/surfInsights/venv3-11/lib/python3.11/site-packages/scipy/optimize/_nnls.pyr   r      s-   D 	QA
QA
17||qD=AG==> ? ? 	?
17||qD=AG==> ? ? 	? 7DAqAGAJBEEEagaj^EEFG G 	G 1ad333NAudqyyBCCCe8O    c                    | j         \  }}| j        | z  }|| z  }|sd|z  }|(dt          ||          z  t          j        d          z  }t          j        |t          j                  }t          j        |t          j                  }	t          j        |t                    }
|                                	                    t          j                  }d}|

                                s9||
          |k                                    rt          j        ||
 z            }d|
|<   d|	dd<   t          j                    5  t          j        d	d
t                      t#          |t          j        |
|
                   ||
         dd          |	|
<   ddd           n# 1 swxY w Y   ||k     r|	|
                                         dk     r|dz  }|
|	dk     z  }||         ||         |	|         z
  z                                  }|d|z
  z  }|||	z  z  }d|
||k    <   t          j                    5  t          j        d	d
t                      t#          |t          j        |
|
                   ||
         dd          |	|
<   ddd           n# 1 swxY w Y   d|	|
 <   ||k     r|	|
                                         dk     |	dd         |dd<   |||z  z
  |dd<   ||k    r|ddfS |

                                s ||
          |k                                    |t          j                            | |z  |z
            dfS )z
    This is a single RHS algorithm from ref [2] above. For multiple RHS
    support, the algorithm is given in  :doi:`10.1002/cem.889`
       N
   g      ?)dtyper   Tg        ignorezIll-conditioned matrix)messagecategorysymF)assume_acheck_finiter	   )r   Tmaxr   spacingzerosfloat64boolcopyastypeallanyargmaxwarningscatch_warningsfilterwarningsr   r   ix_minlinalgnorm)r   r   r   r
   r   r   AtAAtbr   sPwiterkindsalphas                   r   r   r   b   s   
 7DAq
#'C
a%C A#
{3q!99nrz"~~- 	"*%%%A
"*%%%A
$A 	

"*%%A Duuww $QrUS[--// $IaA2h! !!!$&& 	X 	X#H6N-:< < < <RVAq\\*CFUQVWWWAaD	X 	X 	X 	X 	X 	X 	X 	X 	X 	X 	X 	X 	X 	X 	X g~~AaDHHJJNNAIDA;DtW$!D' 127799E!e)AqLAAa3hK(** 1 1':R1>@ @ @ @S1.A*/1 1 1!1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 AqbE g~~AaDHHJJNN t!!!S1W}!!!7??
 b"9I uuww $QrUS[--// $L binnQqS1W%%q((s&   AF##F'*F'9AJJJ)N)NN)	numpyr   scipy.linalgr   r   r2   __all__r   r    r   r   <module>rF      s        - - - - - - - - (WT W W W W WtB) B) B) B) B) B)r   