
    UgM:                     X    d Z ddlZddlmZ ddlmZ g dZd Z	 	 ddZ		 	 ddZ
ddZdS )zQR decomposition functions.    N   )get_lapack_funcs)_datacopied)qrqr_multiplyrqc                 (   |                     dd          }|dv r@d|d<    | |i |}|d         d         j                            t          j                  |d<    | |i |}|d         dk     rt          d|d          |fz            |dd         S )z[Call a LAPACK routine, determining lwork automatically and handling
    error return valueslworkN)Nr   r   z-illegal value in %dth argument of internal %s)getrealastypenpint_
ValueError)fnameargskwargsr
   rets         V/var/www/surfInsights/venv3-11/lib/python3.11/site-packages/scipy/linalg/_decomp_qr.pysafecallr      s     JJw%%E
wa   b'!*/0099w
!T
V

C
2w{{H WHd+, - - 	-ss8O    FfullTc                    |dvrt          d          |rt          j        |           }nt          j        |           }t	          |j                  dk    rt          d          |j        \  }}|j        dk    rt          ||          }	|dvrDt          j        |||f          }
t          j	        |          |
d<   t          j        |          }n0t          j        |||	f          }
t          j        ||	|f          }|r#|t          j
        |t          j        	          f}n|f}|d
k    r|S |dk    r7t          j        |||f          }t          j        ||	f          }||ff|z   S |
f|z   S |pt          ||           }|r0t          d|f          \  }t          |d||          \  }}}|dz  }n*t          d|f          \  }t          |d|||          \  }}|dvs||k     rt          j        |          }n t          j        |d|ddf                   }|r||f}n|f}|d
k    r|S |dk    r||ff|z   S t          d|f          \  }||k     r$t          |d|ddd|f         ||d          \  }
nd|dk    rt          |d|||d          \  }
nF|j        j        }t          j        ||f|	          }||ddd|f<   t          |d|||d          \  }
|
f|z   S )aG  
    Compute QR decomposition of a matrix.

    Calculate the decomposition ``A = Q R`` where Q is unitary/orthogonal
    and R upper triangular.

    Parameters
    ----------
    a : (M, N) array_like
        Matrix to be decomposed
    overwrite_a : bool, optional
        Whether data in `a` is overwritten (may improve performance if
        `overwrite_a` is set to True by reusing the existing input data
        structure rather than creating a new one.)
    lwork : int, optional
        Work array size, lwork >= a.shape[1]. If None or -1, an optimal size
        is computed.
    mode : {'full', 'r', 'economic', 'raw'}, optional
        Determines what information is to be returned: either both Q and R
        ('full', default), only R ('r') or both Q and R but computed in
        economy-size ('economic', see Notes). The final option 'raw'
        (added in SciPy 0.11) makes the function return two matrices
        (Q, TAU) in the internal format used by LAPACK.
    pivoting : bool, optional
        Whether or not factorization should include pivoting for rank-revealing
        qr decomposition. If pivoting, compute the decomposition
        ``A[:, P] = Q @ R`` as above, but where P is chosen such that the 
        diagonal of R is non-increasing.
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    Q : float or complex ndarray
        Of shape (M, M), or (M, K) for ``mode='economic'``. Not returned
        if ``mode='r'``. Replaced by tuple ``(Q, TAU)`` if ``mode='raw'``.
    R : float or complex ndarray
        Of shape (M, N), or (K, N) for ``mode in ['economic', 'raw']``.
        ``K = min(M, N)``.
    P : int ndarray
        Of shape (N,) for ``pivoting=True``. Not returned if
        ``pivoting=False``.

    Raises
    ------
    LinAlgError
        Raised if decomposition fails

    Notes
    -----
    This is an interface to the LAPACK routines dgeqrf, zgeqrf,
    dorgqr, zungqr, dgeqp3, and zgeqp3.

    If ``mode=economic``, the shapes of Q and R are (M, K) and (K, N) instead
    of (M,M) and (M,N), with ``K=min(M,N)``.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy import linalg
    >>> rng = np.random.default_rng()
    >>> a = rng.standard_normal((9, 6))

    >>> q, r = linalg.qr(a)
    >>> np.allclose(a, np.dot(q, r))
    True
    >>> q.shape, r.shape
    ((9, 9), (9, 6))

    >>> r2 = linalg.qr(a, mode='r')
    >>> np.allclose(r, r2)
    True

    >>> q3, r3 = linalg.qr(a, mode='economic')
    >>> q3.shape, r3.shape
    ((9, 6), (6, 6))

    >>> q4, r4, p4 = linalg.qr(a, pivoting=True)
    >>> d = np.abs(np.diag(r4))
    >>> np.all(d[1:] <= d[:-1])
    True
    >>> np.allclose(a[:, p4], np.dot(q4, r4))
    True
    >>> q4.shape, r4.shape, p4.shape
    ((9, 9), (9, 6), (6,))

    >>> q5, r5, p5 = linalg.qr(a, mode='economic', pivoting=True)
    >>> q5.shape, r5.shape, p5.shape
    ((9, 6), (6, 6), (6,))

    )r   r   reconomicrawz?Mode argument should be one of ['full', 'r', 'economic', 'raw']   zexpected a 2-D arrayr   )r   r   shape.dtyper   r   )geqp3r%   )overwrite_ar   )geqrfr'   r
   r&   N)orgqrzgorgqr/gungqrr   )r   r   asarray_chkfiniteasarraylenr"   sizemin
empty_likeidentityarangeint32
zeros_liker   r   r   triur$   charempty)ar&   r
   modepivotingcheck_finitea1MNKQRRjr   taur%   jpvtr'   
gor_un_gqrtqqrs                        r   r   r      s   D 999 . / / 	/  !!$$Z]]
28}}/0008DAq 
w!||1II***bA///A[^^AcFb!!AAbA///AbA///A 	BIarx0000BBB3;;IU]]r!Q000B-1$///CI<"$$tby5+b!"4"4K 4!*re44 MMMD#	!*re445'2U'24 4 4C &&&!a%%GBKKGBrr111uI WRs{{		S	|b  ":u55KJ1uuj/2aaa!e9c!q2 2 2			j/2s%"#% % % HMh1vQ'''AAArrE
j/35"#% % % 4"9r   rightc           
      |   |dvrt          d| d          t          j        |          }|j        dk     r$d}t          j        |          }|dk    r|j        }nd}t          j        t          j        |                     } | j        \  }}	|dk    rH|j        d         t          ||	|||	z
  z  z             k    rt          d	| j         d
|j                   n0||j        d         k    rt          d|j         d
| j                   t          | |dd|          }
|
d         \  }}|j
        dk    r t          j        |          f|
dd         z   S t          d|f          \  }|j        dv rd}nd}|dddt          ||	          f         }||	k    r|dk    r~|s||r:t          j        |j        d         |f|j        d          }|j        |ddd|	f<   n6t          j        ||j        d         f|j        d          }||d|	ddf<   d}|rd}nd}d}n7|j        d         r|dk    s|r|j        }|dk    rd}nd}nd}|}|dk    rd}nd}t#          |d||||||          \  }|dk    r|j        }|dk    r|dddt          ||	          f         }|r|                                }|f|
dd         z   S )a	  
    Calculate the QR decomposition and multiply Q with a matrix.

    Calculate the decomposition ``A = Q R`` where Q is unitary/orthogonal
    and R upper triangular. Multiply Q with a vector or a matrix c.

    Parameters
    ----------
    a : (M, N), array_like
        Input array
    c : array_like
        Input array to be multiplied by ``q``.
    mode : {'left', 'right'}, optional
        ``Q @ c`` is returned if mode is 'left', ``c @ Q`` is returned if
        mode is 'right'.
        The shape of c must be appropriate for the matrix multiplications,
        if mode is 'left', ``min(a.shape) == c.shape[0]``,
        if mode is 'right', ``a.shape[0] == c.shape[1]``.
    pivoting : bool, optional
        Whether or not factorization should include pivoting for rank-revealing
        qr decomposition, see the documentation of qr.
    conjugate : bool, optional
        Whether Q should be complex-conjugated. This might be faster
        than explicit conjugation.
    overwrite_a : bool, optional
        Whether data in a is overwritten (may improve performance)
    overwrite_c : bool, optional
        Whether data in c is overwritten (may improve performance).
        If this is used, c must be big enough to keep the result,
        i.e. ``c.shape[0]`` = ``a.shape[0]`` if mode is 'left'.

    Returns
    -------
    CQ : ndarray
        The product of ``Q`` and ``c``.
    R : (K, N), ndarray
        R array of the resulting QR factorization where ``K = min(M, N)``.
    P : (N,) ndarray
        Integer pivot array. Only returned when ``pivoting=True``.

    Raises
    ------
    LinAlgError
        Raised if QR decomposition fails.

    Notes
    -----
    This is an interface to the LAPACK routines ``?GEQRF``, ``?ORMQR``,
    ``?UNMQR``, and ``?GEQP3``.

    .. versionadded:: 0.11.0

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import qr_multiply, qr
    >>> A = np.array([[1, 3, 3], [2, 3, 2], [2, 3, 3], [1, 3, 2]])
    >>> qc, r1, piv1 = qr_multiply(A, 2*np.eye(4), pivoting=1)
    >>> qc
    array([[-1.,  1., -1.],
           [-1., -1.,  1.],
           [-1., -1., -1.],
           [-1.,  1.,  1.]])
    >>> r1
    array([[-6., -3., -5.            ],
           [ 0., -1., -1.11022302e-16],
           [ 0.,  0., -1.            ]])
    >>> piv1
    array([1, 0, 2], dtype=int32)
    >>> q2, r2, piv2 = qr(A, mode='economic', pivoting=1)
    >>> np.allclose(2*q2 - qc, np.zeros((4, 3)))
    True

    )leftrG   z5Mode argument can only be 'left' or 'right' but not ''r    TrI   Fr   z5Array shapes are not compatible for Q @ c operation: z vs r   z5Array shapes are not compatible for c @ Q operation: Nr   )ormqr)sdTCF)r$   orderr=   r@   LC_CONTIGUOUSzgormqr/gunmqr)overwrite_crG   )r   r   r*   ndim
atleast_2drN   r+   r"   r.   r   r-   r/   r   typecodezerosr$   flagsr   ravel)r7   cr8   r9   	conjugater&   rT   onedimr<   r=   r   r?   rB   
gor_un_mqrtranscclrcQs                     r   r   r      s   X $$$ )!%) ) ) * * 	*
QAvzzM!6>>A
bjmm$$A7DAqv~~71:QK1$5 56666 C,-GC C9:C C D D D 7 
?? C,-GC C9:C C D D D QT5(
3
3CVFAs 	v{{a  "SW,,":t44KJj((	!!!Zc!QiiZ-A1uu 	171:q/DDDBBqqq"1"uII1agaj/DDDBBrr111uIE 	BBB	
	  Uc\\Y\S6>>BBBB6>>BBB
:E1c2*, , ,CB||Tw:C1II: XXZZ53qrr7?r   c                 h   |dvrt          d          |rt          j        |           }nt          j        |           }t	          |j                  dk    rt          d          |j        \  }}|j        dk    rt          ||          }|dk    sDt          j        |          }	t          j        |||f          }
t          j	        |          |
d<   n0t          j        |||f          }	t          j        |||f          }
|d	k    r|	S |	|
fS |pt          ||           }t          d
|f          \  }t          |d|||          \  }}|dk    r||k     rt          j        |||z
            }	n"t          j        || d| df                   }	|d	k    r|	S t          d|f          \  }||k     r!t          |d|| d         ||d          \  }
nZ|dk    rt          |d|||d          \  }
n<t          j        ||f|j                  }||| d<   t          |d|||d          \  }
|	|
fS )a  
    Compute RQ decomposition of a matrix.

    Calculate the decomposition ``A = R Q`` where Q is unitary/orthogonal
    and R upper triangular.

    Parameters
    ----------
    a : (M, N) array_like
        Matrix to be decomposed
    overwrite_a : bool, optional
        Whether data in a is overwritten (may improve performance)
    lwork : int, optional
        Work array size, lwork >= a.shape[1]. If None or -1, an optimal size
        is computed.
    mode : {'full', 'r', 'economic'}, optional
        Determines what information is to be returned: either both Q and R
        ('full', default), only R ('r') or both Q and R but computed in
        economy-size ('economic', see Notes).
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    R : float or complex ndarray
        Of shape (M, N) or (M, K) for ``mode='economic'``. ``K = min(M, N)``.
    Q : float or complex ndarray
        Of shape (N, N) or (K, N) for ``mode='economic'``. Not returned
        if ``mode='r'``.

    Raises
    ------
    LinAlgError
        If decomposition fails.

    Notes
    -----
    This is an interface to the LAPACK routines sgerqf, dgerqf, cgerqf, zgerqf,
    sorgrq, dorgrq, cungrq and zungrq.

    If ``mode=economic``, the shapes of Q and R are (K, N) and (M, K) instead
    of (N,N) and (M,N), with ``K=min(M,N)``.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy import linalg
    >>> rng = np.random.default_rng()
    >>> a = rng.standard_normal((6, 9))
    >>> r, q = linalg.rq(a)
    >>> np.allclose(a, r @ q)
    True
    >>> r.shape, q.shape
    ((6, 9), (9, 9))
    >>> r2 = linalg.rq(a, mode='r')
    >>> np.allclose(r, r2)
    True
    >>> r3, q3 = linalg.rq(a, mode='economic')
    >>> r3.shape, q3.shape
    ((6, 6), (6, 9))

    )r   r   r   z8Mode argument should be one of ['full', 'r', 'economic']r    zexpected matrixr   r   r!   .r   )gerqfrd   r(   N)orgrqzgorgrq/gungrqr   r#   )r   r   r*   r+   r,   r"   r-   r.   r/   r0   r   r   r   r4   r6   r$   )r7   r&   r
   r8   r:   r;   r<   r=   r>   r@   r?   rd   r   rB   
gor_un_grqrq1s                   r   r   r   f  s   B ,,,KM M 	M  !!$$Z]]
28}}*+++8DAq 
w!||1IIz!!b!!AbA///A[^^AcFFbA///AbA///A3;;H!t5+b!"4"4Kj2%00FEugr#.0 0 0GB:QGB!GBrssQBCCxL!!s{{":u55KJ1uuj/2qbcc7Cu"#% % %			j/2s%"#% % % h1vRX...QBCCj/35"#% % % a4Kr   )FNr   FT)rG   FFFF)FNr   T)__doc__numpyr   lapackr   _miscr   __all__r   r   r   r    r   r   <module>rn      s    ! !     % $ $ $ $ $      
%
%
%   @Eq q q qh ?D/4U U U Upy y y y y yr   