
    Ugx7                         d Z g dZddlmZmZmZmZmZmZm	Z	m
Z
 ddlmZ ddlmZ i ZddefdZ[i Zdefd	Z[i Zdefd
Z[i ZefdZ[d Zi ZdefdZ[i ZdefdZ[i ZdefdZ[i ZdefdZ[i ZdefdZ[dS )z1
Differential and pseudo-differential operators.
)
difftilbertitilberthilbertihilbertcs_diffcc_diffsc_diffss_diffshift    )piasarraysincossinhcoshtanhiscomplexobj   )convolve)_datacopiedNc                    t          |           }|dk    r|S t          |          r0t          |j        ||          dt          |j        ||          z  z   S |dt
          z  |z  }nd}t          |           }|                    |||f          }|Qt          |          dk    r|r|                                 |||fd}t          j
        |||d	          }|||||f<   t          ||           }	t          j	        |||dz  |	
          S )a*  
    Return kth derivative (or integral) of a periodic sequence x.

    If x_j and y_j are Fourier coefficients of periodic functions x
    and y, respectively, then::

      y_j = pow(sqrt(-1)*j*2*pi/period, order) * x_j
      y_0 = 0 if order is not 0.

    Parameters
    ----------
    x : array_like
        Input array.
    order : int, optional
        The order of differentiation. Default order is 1. If order is
        negative, then integration is carried out under the assumption
        that ``x_0 == 0``.
    period : float, optional
        The assumed period of the sequence. Default is ``2*pi``.

    Notes
    -----
    If ``sum(x, axis=0) = 0`` then ``diff(diff(x, k), -k) == x`` (within
    numerical accuracy).

    For odd order and even ``len(x)``, the Nyquist mode is taken zero.

    r                 ?N         ?   c                 0    | rt          || z  |          S dS Nr   )pow)kordercs      Z/var/www/surfInsights/venv3-11/lib/python3.11/site-packages/scipy/fftpack/_pseudo_diffs.pykernelzdiff.<locals>.kernelA   s!     &1Q3u~~%1    r   dzero_nyquistswap_real_imagoverwrite_x)r   r   r   realimagr   lengetpopitemr   init_convolution_kernelr   )
xr!   period_cachetmpr"   nomegar$   r+   s
             r#   r   r      sT   : !**Czz
C JCHU6**2d38E&.I.I+IIIbDKAAJJ%{##E}v;; !     ! !1 	 	 	 	 06E>?A A A#%{c1%%KSeai)46 6 6 6r%   c                    t          |           }t          |          r0t          |j        ||          dt          |j        ||          z  z   S ||dz  t
          z  |z  }t          |           }|                    ||f          }|Nt          |          dk    r|r|                                 ||fd}t          j
        ||d          }||||f<   t          ||           }t          j	        ||d|          S )	a  
    Return h-Tilbert transform of a periodic sequence x.

    If x_j and y_j are Fourier coefficients of periodic functions x
    and y, respectively, then::

        y_j = sqrt(-1)*coth(j*h*2*pi/period) * x_j
        y_0 = 0

    Parameters
    ----------
    x : array_like
        The input array to transform.
    h : float
        Defines the parameter of the Tilbert transform.
    period : float, optional
        The assumed period of the sequence. Default period is ``2*pi``.

    Returns
    -------
    tilbert : ndarray
        The result of the transform.

    Notes
    -----
    If ``sum(x, axis=0) == 0`` and ``n = len(x)`` is odd, then
    ``tilbert(itilbert(x)) == x``.

    If ``2 * pi * h / period`` is approximately 10 or larger, then
    numerically ``tilbert == hilbert``
    (theoretically oo-Tilbert == Hilbert).

    For even ``len(x)``, the Nyquist mode of ``x`` is taken zero.

    r   Nr   r   c                 4    | rdt          || z            z  S dS )Nr   r   r   r    hs     r#   r$   ztilbert.<locals>.kernel   s#     %4!99}$1r%   r   r'   r)   )r   r   r   r,   r-   r   r.   r/   r0   r   r1   r   	r2   r<   r3   r4   r5   r6   r7   r$   r+   s	            r#   r   r   S   s+   H !**CC 1sxF++GCHa0001 	1 EBJAAJJ1vE}v;; !     !  	 	 	 	 0Fa@@@!uc1%%KSaKPPPPr%   c                    t          |           }t          |          r0t          |j        ||          dt          |j        ||          z  z   S ||dz  t
          z  |z  }t          |           }|                    ||f          }|Nt          |          dk    r|r|                                 ||fd}t          j
        ||d          }||||f<   t          ||           }t          j	        ||d|          S )	a  
    Return inverse h-Tilbert transform of a periodic sequence x.

    If ``x_j`` and ``y_j`` are Fourier coefficients of periodic functions x
    and y, respectively, then::

      y_j = -sqrt(-1)*tanh(j*h*2*pi/period) * x_j
      y_0 = 0

    For more details, see `tilbert`.

    r   Nr   r   c                 0    | rt          || z             S dS r   r:   r;   s     r#   r$   zitilbert.<locals>.kernel   s!     "QqS		z!1r%   r   r=   r)   )r   r   r   r,   r-   r   r.   r/   r0   r   r1   r   r>   s	            r#   r   r      s'    !**CC .6**(38Af---. 	.aCF6MAAJJ!uE}v;; !     !  	 	 	 	 06A>>>!uc1%%KSaKPPPPr%   c                    t          |           }t          |          r,t          |j                  dt          |j                  z  z   S t          |           }|                    |          }|Jt          |          dk    r|r|                                 |d }t          j	        ||d          }|||<   t          ||           }t          j        ||d|          S )a  
    Return Hilbert transform of a periodic sequence x.

    If x_j and y_j are Fourier coefficients of periodic functions x
    and y, respectively, then::

      y_j = sqrt(-1)*sign(j) * x_j
      y_0 = 0

    Parameters
    ----------
    x : array_like
        The input array, should be periodic.
    _cache : dict, optional
        Dictionary that contains the kernel used to do a convolution with.

    Returns
    -------
    y : ndarray
        The transformed input.

    See Also
    --------
    scipy.signal.hilbert : Compute the analytic signal, using the Hilbert
                           transform.

    Notes
    -----
    If ``sum(x, axis=0) == 0`` then ``hilbert(ihilbert(x)) == x``.

    For even len(x), the Nyquist mode of x is taken zero.

    The sign of the returned transform does not have a factor -1 that is more
    often than not found in the definition of the Hilbert transform. Note also
    that `scipy.signal.hilbert` does have an extra -1 factor compared to this
    function.

    r   Nr   c                 &    | dk    rdS | dk     rdS dS )Nr   r   g      g         )r    s    r#   r$   zhilbert.<locals>.kernel   s#    1uusQt3r%   r   r=   r)   )r   r   r   r,   r-   r.   r/   r0   r   r1   r   )r2   r4   r5   r6   r7   r$   r+   s          r#   r   r      s    N !**CC 6sx  GCH$5$5!555AAJJqMME}v;; !     !	 	 	 06A>>>q	c1%%KSaKPPPPr%   c                 "    t          |            S )z
    Return inverse Hilbert transform of a periodic sequence x.

    If ``x_j`` and ``y_j`` are Fourier coefficients of periodic functions x
    and y, respectively, then::

      y_j = -sqrt(-1)*sign(j) * x_j
      y_0 = 0

    )r   )r2   s    r#   r   r     s     AJJ;r%   c                 (   t          |           }t          |          r2t          |j        |||          dt          |j        |||          z  z   S | |dz  t
          z  |z  }|dz  t
          z  |z  }t          |           }|                    |||f          }|Pt          |          dk    r|r|                                 |||fd}t          j
        ||d          }|||||f<   t          ||           }	t          j	        ||d|	          S )	a  
    Return (a,b)-cosh/sinh pseudo-derivative of a periodic sequence.

    If ``x_j`` and ``y_j`` are Fourier coefficients of periodic functions x
    and y, respectively, then::

      y_j = -sqrt(-1)*cosh(j*a*2*pi/period)/sinh(j*b*2*pi/period) * x_j
      y_0 = 0

    Parameters
    ----------
    x : array_like
        The array to take the pseudo-derivative from.
    a, b : float
        Defines the parameters of the cosh/sinh pseudo-differential
        operator.
    period : float, optional
        The period of the sequence. Default period is ``2*pi``.

    Returns
    -------
    cs_diff : ndarray
        Pseudo-derivative of periodic sequence `x`.

    Notes
    -----
    For even len(`x`), the Nyquist mode of `x` is taken as zero.

    r   Nr   r   c                 V    | r&t          || z             t          || z            z  S dS r   )r   r   r    abs      r#   r$   zcs_diff.<locals>.kernel@  s0     ,QqS		z$qs))++1r%   r   r=   r)   )r   r   r   r,   r-   r   r.   r/   r0   r   r1   r   
r2   rH   rI   r3   r4   r5   r6   r7   r$   r+   s
             r#   r   r     sB   < !**CC /sx!F++'#(1Qv.../ 	/aCF6MaCF6MAAJJ!AwE}v;; !     ! 1 	 	 	 	 06A>>>!Awc1%%KSaKPPPPr%   c                 (   t          |           }t          |          r2t          |j        |||          dt          |j        |||          z  z   S | |dz  t
          z  |z  }|dz  t
          z  |z  }t          |           }|                    |||f          }|Pt          |          dk    r|r|                                 |||fd}t          j
        ||d          }|||||f<   t          ||           }	t          j	        ||d|	          S )	a  
    Return (a,b)-sinh/cosh pseudo-derivative of a periodic sequence x.

    If x_j and y_j are Fourier coefficients of periodic functions x
    and y, respectively, then::

      y_j = sqrt(-1)*sinh(j*a*2*pi/period)/cosh(j*b*2*pi/period) * x_j
      y_0 = 0

    Parameters
    ----------
    x : array_like
        Input array.
    a,b : float
        Defines the parameters of the sinh/cosh pseudo-differential
        operator.
    period : float, optional
        The period of the sequence x. Default is 2*pi.

    Notes
    -----
    ``sc_diff(cs_diff(x,a,b),b,a) == x``
    For even ``len(x)``, the Nyquist mode of x is taken as zero.

    r   Nr   r   c                 T    | r%t          || z            t          || z            z  S dS r   )r   r   rG   s      r#   r$   zsc_diff.<locals>.kernelx  s.     +AaCyyac**1r%   r   r=   r)   )r   r   r	   r,   r-   r   r.   r/   r0   r   r1   r   rJ   s
             r#   r	   r	   P  sB   4 !**CC /sx!F++'#(1Qv.../ 	/aCF6MaCF6MAAJJ!AwE}v;; !     ! 1 	 	 	 	 06A>>>!Awc1%%KSaKPPPPr%   c                 "   t          |           }t          |          r2t          |j        |||          dt          |j        |||          z  z   S | |dz  t
          z  |z  }|dz  t
          z  |z  }t          |           }|                    |||f          }|Nt          |          dk    r|r|                                 |||fd}t          j
        ||          }|||||f<   t          ||           }	t          j	        |||	          S )ac  
    Return (a,b)-sinh/sinh pseudo-derivative of a periodic sequence x.

    If x_j and y_j are Fourier coefficients of periodic functions x
    and y, respectively, then::

      y_j = sinh(j*a*2*pi/period)/sinh(j*b*2*pi/period) * x_j
      y_0 = a/b * x_0

    Parameters
    ----------
    x : array_like
        The array to take the pseudo-derivative from.
    a,b
        Defines the parameters of the sinh/sinh pseudo-differential
        operator.
    period : float, optional
        The period of the sequence x. Default is ``2*pi``.

    Notes
    -----
    ``ss_diff(ss_diff(x,a,b),b,a) == x``

    r   Nr   r   c                 t    | r%t          || z            t          || z            z  S t          |          |z  S N)r   floatrG   s      r#   r$   zss_diff.<locals>.kernel  s9     +AaCyyac**88A:r%   r+   )r   r   r
   r,   r-   r   r.   r/   r0   r   r1   r   rJ   s
             r#   r
   r
     s;   2 !**CC /sx!F++'#(1Qv.../ 	/aCF6MaCF6MAAJJ!AwE}v;; !     ! 1 	 	 	 	 06::!Awc1%%KS;????r%   c                 "   t          |           }t          |          r2t          |j        |||          dt          |j        |||          z  z   S | |dz  t
          z  |z  }|dz  t
          z  |z  }t          |           }|                    |||f          }|Nt          |          dk    r|r|                                 |||fd}t          j
        ||          }|||||f<   t          ||           }	t          j	        |||	          S )a  
    Return (a,b)-cosh/cosh pseudo-derivative of a periodic sequence.

    If x_j and y_j are Fourier coefficients of periodic functions x
    and y, respectively, then::

      y_j = cosh(j*a*2*pi/period)/cosh(j*b*2*pi/period) * x_j

    Parameters
    ----------
    x : array_like
        The array to take the pseudo-derivative from.
    a,b : float
        Defines the parameters of the sinh/sinh pseudo-differential
        operator.
    period : float, optional
        The period of the sequence x. Default is ``2*pi``.

    Returns
    -------
    cc_diff : ndarray
        Pseudo-derivative of periodic sequence `x`.

    Notes
    -----
    ``cc_diff(cc_diff(x,a,b),b,a) == x``

    r   Nr   r   c                 L    t          || z            t          || z            z  S rO   )r   rG   s      r#   r$   zcc_diff.<locals>.kernel  s!    !99T!A#YY&&r%   rQ   )r   r   r   r,   r-   r   r.   r/   r0   r   r1   r   rJ   s
             r#   r   r     s9   : !**CC /sx!F++'#(1Qv.../ 	/aCF6MaCF6MAAJJ!AwE}v;; !     ! 1 	' 	' 	' 	'06::!Awc1%%KS;????r%   c                 J   t          |           }t          |          r0t          |j        ||          dt          |j        ||          z  z   S ||dz  t
          z  |z  }t          |           }|                    ||f          }|ot          |          dk    r|r|                                 ||fd}|fd}t          j
        ||dd          }	t          j
        ||d	d          }
|	|
f|||f<   n|\  }	}
t          ||           }t          j        ||	|
|
          S )a  
    Shift periodic sequence x by a: y(u) = x(u+a).

    If x_j and y_j are Fourier coefficients of periodic functions x
    and y, respectively, then::

          y_j = exp(j*a*2*pi/period*sqrt(-1)) * x_f

    Parameters
    ----------
    x : array_like
        The array to take the pseudo-derivative from.
    a : float
        Defines the parameters of the sinh/sinh pseudo-differential
    period : float, optional
        The period of the sequences x and y. Default period is ``2*pi``.
    r   Nr   r   c                 &    t          || z            S rO   )r   r    rH   s     r#   kernel_realzshift.<locals>.kernel_real      qs88Or%   c                 &    t          || z            S rO   )r   rV   s     r#   kernel_imagzshift.<locals>.kernel_imag  rX   r%   r   r&   r   rQ   )r   r   r   r,   r-   r   r.   r/   r0   r   r1   r   
convolve_z)r2   rH   r3   r4   r5   r6   r7   rW   rZ   
omega_real
omega_imagr+   s               r#   r   r     s   $ !**CC DSXa''5!F+C+C(CCCaCF6MAAJJ!uE}v;; !     !  	 	 	 	  	 	 	 	5aaCDF F F
5aaCDF F F
":-!u %
:c1%%Ks:j+68 8 8 8r%   )__doc____all__numpyr   r   r   r   r   r   r   r    r   scipy.fft._pocketfft.helperr   r4   r   r   r   r   r   r   r	   r
   r   r   rC   r%   r#   <module>rc      s   
  
 H G G G G G G G G G G G G G G G G G G G       3 3 3 3 3 3 
 $v 66 66 66 66r  
 f =Q =Q =Q =Q@  
 V !Q !Q !Q !QH  
  :Q :Q :Q :Qz    
 ! 3Q 3Q 3Q 3Ql  
 ! /Q /Q /Q /Qd  
 ! .@ .@ .@ .@b  
 ! 0@ 0@ 0@ 0@f  
 F ,8 ,8 ,8 ,8^ FFr%   